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Fig. 1: We propose MotionTrans, a framework that enables motion-level learning from VR-collected human data. By cotraining
on 15 human tasks and 15 robot tasks, we empower end-to-end robotic manipulation policies to directly perform tasks in human
data on real robot hardware. Our framework also improves finetuning performance when a few robot demonstrations are available
for these tasks.

Abstract—Scaling real robot data is a key bottleneck in
imitation learning, leading to the use of auxiliary data for policy
training. While other aspects of robotic manipulation such as
image or language understanding may be learned from internet-
based datasets, acquiring motion knowledge remains challenging.
Human data, with its rich diversity of manipulation behaviors,
offers a valuable resource for this purpose. While previous works
show that using human data can bring benefits, such as improving
robustness and training efficiency, it remains unclear whether
it can realize its greatest advantage: enabling robot policies to
directly learn new motions for task completion. In this paper, we
systematically explore this potential through multi-task human-
robot cotraining. We introduce MotionTrans, a framework that
includes a data collection system, a human data transformation

pipeline, and a weighted cotraining strategy. By cotraining 30
human-robot tasks simultaneously, we direcly transfer motions
of 13 tasks from human data to deployable end-to-end robot
policies. Notably, 9 tasks achieve non-trivial success rates in zero-
shot manner. MotionTrans also significantly enhances pretraining-
finetuning performance (+40% success rate). Through ablation
study, we also identify key factors for successful motion learn-
ing: cotraining with robot data and broad task-related motion
coverage. These findings unlock the potential of motion-level
learning from human data, offering insights into its effective use
for training robotic manipulation policies. All data, code, and
model weights are open-sourced https://motiontrans.github.io/.
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I. Introduction

Learning robotic manipulation policies from teleoperated
demonstrations has progressed rapidly in recent years [11,
12, 7]. However, collecting large-scale robot datasets remains
costly and labor-intensive [26, 49], creating a significant
bottleneck for further improvement of manipulation abilities.
To address data scarcity, researchers have turned to auxiliary
sources, such as images or language [23, 77] to help pol-
icy training. While internet data provides abundant vision-
language knowledge to aid policy learning [21], acquiring
motion knowledge remains a significant challenge.

Human data [54, 18] represents a particularly promising
source to solve this: it is abundant, easy to collect, and
rich in diverse manipulation behaviors [18]. Previous works
have leveraged human demonstrations to extract task-aware
representations, such as affordances [3] or keypoint flows [74],
to support motion transfer. However, the introduction of in-
termediate representation hinders integration with mainstream
end-to-end policies. More recently, with advances in wearable
sensing, researchers begin to explore the use of human motion
data (with hand poses recorded from VR device) directly for
robot policy cotraining or pretraining [25, 54, 70, 44, 6]. These
approaches have shown benefits for visual grounding [44],
robustness [70] and training efficiency [6]. However, it is still
uncertain whether it can fully realize its greatest advantage:
allowing robot policies to directly acquire new motions for
task completion.

In this paper, we investigate this question by introducing
MotionTrans, a framework designed to directly learn 13
robot-executable motions from human data for a unified,
end-to-end robot policy. This is achieved through multi-task
human-robot cotraining. We develop a VR-based teleoperation
system and data collection pipeline to construct the Motion-
Trans Dataset, which includes 3,213 demonstrations across 15
human tasks and 15 robot tasks from more than 10 scenes.
We further propose a transformation procedure that maps hu-
man demonstrations into the robot’s observation–action space,
making them compatible with mainstream end-to-end policies
such as Diffusion Policy [12] or the Vision-Language-Action
model (𝜋0-VLA) [7]. Finally, we adopt a weighted cotraining
strategy that jointly optimizes over both human and robot tasks.
We name the entire framework MotionTrans because it enables
motion transfer from human data to deployable robot policies.

We first evaluate the zero-shot performance on all human
tasks. This means that we directly deploy policies to robot
without collecting any robot data for these tasks. Results show
that Diffusion Policy [12] and 𝜋0-VLA model [7] achieve non-
trivial success rates for 9 tasks in total. Even in unsuccessful
cases, they exhibit meaningful motion for task completion, such
as reaching target objects. We also find that, when few robot
demonstrations of these human tasks are available for finetuning,
pretraining on the MotionTrans Dataset leads to an average 40%
boost in success rate on these tasks. Further analysis indicates
that the effectiveness of motion transfer depends on the presence
of both robot demonstrations and sufficient task-related motion

coverage during training. Together, these findings highlight the
possibility for motion-level learning from human data, and
provide a clear framework and principles for achieving this.
Our contributions can be summarized as:

• MotionTrans, a framework for end-to-end human-to-robot
motion transfer, including data collection system, a pipeline
to transform human data into robot format, and a weighted
human-robot cotraining strategy.

• MotionTrans Dataset, containing 3,213 demonstrations for
15 human tasks and 15 robot tasks across 10+ scenes.

• MotionTrans enables explicit human motions transfer
for end-to-end robot policies, even for zero-shot set-
tings (directly learn 13 tasks from human data).

• Key factors for successful motion transfer: robot data
cotraining and sufficient task-related motion coverage.

II. Related Work
A. Imitation Learning for Robot Manipulation

Imitation learning [32, 4, 58, 34] has made significant
progress in recent years. By learning motion from training
data [11, 10], imitation policies can effectively perform a wide
range of manipulation tasks [12, 76], including challenging
multi-task settings [80, 38, 7, 6, 35]. In this paper, we focus on
two widely-used architectures for imitation learning: Diffusion
Policy [12] and the 𝜋0 Vision-Language-Action Model (𝜋0-
VLA) [7]. However, the scalability of training data remains
a major challenge, due to the high cost of collecting real-
robot data [49, 26, 67]. This has led to the use of auxiliary
data [23, 77, 36] for policy training. Despite ability such as
image or language understanding in robotic manipulation could
improve from internet-based pretraining [21, 33], acquiring mo-
tion knowledge remains difficult. Human data [18, 41, 73, 14],
with its abundant and diverse manipulation behaviors, provides
a valuable supplement for this.

B. Task-Aware Representation Learning from Human
Early works have leveraged task-aware representations for

human-to-robot knowledge transfer. Self-supervised learning
has been used for implicit task-aware representations [46,
24, 45, 71, 9] learning, while representations like affor-
dances [3, 28, 57], object poses [19], videos [5, 51], and motion
flows [74, 66, 68, 55] support motion-aware representation
learning. Some approaches use wrist trajectories as prompts
for one-shot human-to-robot skill transfer [27, 78, 79, 60, 50].
EgoZero [39] predicts wrist poses from smart glasses, but relies
on keypoint-based representations [64] for policy observations.
The use of intermediate representations in these methods limits
their integration with mainstream end-to-end visuomotor policy
learning [12, 7], restricting their future applicability.

C. End-to-End Policy Learning with Posed Human Data
Human motion data can be captured through hand-held

SLAM-based device [13, 69], but often limited to only wrist
camera sensing [61]. Recent advancements in wearable sens-
ing [15, 10, 54] now allow easy collection of posed human
data (with hand keypoints, wrist poses information etc.) through
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Fig. 2: Illustration of our proposed MotionTrans framework, which consists of a human-robot data collection system, a pipeline for
transforming human data into robot format, and a weighted human-robot multi-task cotraining strategy. After training, we enable
the direct deployment of the trained policies to perform tasks in human datasets on real robots.

VR devices [18]. This data provide action label for prediction,
supporting end-to-end policy learning [30]. Some studies
cotrain human and robot data [25, 54, 47, 29, 61, 40], while
others first pretrain with human data and then finetune with
robot demonstrations [70, 44, 6]. These works have shown policy
improvements in visual grounding [44], robustness [54, 70], and
training efficiency [6, 25]. However, whether it can achieve direct
transfer of motions from human to robot remains unclear [39]. To
the best of our knowledge, our paper is the first to systematically
verify motion-level end-to-end learning from human data.

III. MotionTrans
In this section, we present our proposed MotionTrans frame-

work (Figure 2). The core idea is to first transform human
data to robot data format, and then jointly learn from human
and robot data within the robot observation-action space. By
training policies in robot space, we can directly deploy policies
to perform tasks from human data on real-world robots, i.e.,
enabling explicit human-to-robot motion transfer. We first in-
troduce the motion transfer problem and define the observation-
action space of the policy (Section III-A). To facilitate human-
robot data cotraining, we develop data collection systems for
both human and robot data (Section III-B). We then propose a
pipeline to convert human data into robot format (Section III-C).
This ensures compatibility with mainstream robot policies,
enabling subsequent end-to-end cotraining. Finally, we choose
the architecture of robot policies and apply human-robot multi-
task cotraining (Section III-D).

A. Problem Definition

Our goal is to enable explicit human-to-robot motion
transfer. Considering the embodiment gap between human
and robot [25], we explore this problem within a multi-task
human–robot cotraining framework, where robot data for certain
tasks are available to help motions in human data adapt to the
robot. Specifically, we aim to train a policy 𝑃policy on 𝐷 =

𝐷robot ∪𝐷human, where 𝐷robot = {𝐷𝑖robot | 𝑖 = 1, . . . , 𝑁robot} is the
robot dataset, and 𝐷human = {𝐷𝑖human | 𝑖 = 1, . . . , 𝑁human} is the
human dataset. Each 𝐷𝑖 represents a sub-dataset corresponding
to a specific task, and the task sets of the human and robot
data are non-overlapping. After training, we deploy 𝑃policy
on a real-world robot and evaluate its performance on tasks
from 𝐷human to assess the effectiveness of motion transfer.
This is defined as the zero-shot setting, since the evaluation
tasks contain no corresponding robot data for training. We also
evaluate the performance of few-shot finetuning setting, where
a small number of robot demonstrations for the tasks from
𝐷human are available to further finetune 𝑃policy.

We define the input and output of our policies within the robot
observation-action space 𝑆 = (𝐼𝑡 , 𝑃𝑡 , 𝐴𝑡 ). At each timestamp
𝑡, the policy receives an egocentric RGB image 𝐼𝑡 ∈ R𝐻×𝑊×3

and proprioceptive states 𝑃𝑡 ∈ R𝑇𝑃×𝐷 , where 𝑇𝑃 is the history
length and 𝐷 is the state dimension. For simplicity, this work
focuses on single-arm tasks (Figure 4), thus 𝐷 corresponds
to the concatenation of one robot wrist pose and one robot
hand joint state (Figure 3(c)). The policy outputs an action



(b) Human Data Recording View

(a) Human Data Collection Device

ZED2 Camera Meta Quest 3

ZED2 Camera

Inspire Robot Hand

Franka Emika Robot Arm

Power & Workstation

Movable Lifting Table

(c) Robot Hardware Platform

Fig. 3: Illustration of our hardware system, which includes a
human VR-based data collection device and a single-arm robot
platform. A screenshot of the VR device during human data
collection is also provided.

chunk prediction 𝐴𝑡 ∈ R𝑇𝐴×𝐷 [12], where 𝑇𝐴 denotes the action
prediction horizon. Next, we describe the details of our human-
robot data collection and processing system.

B. Human-Robot Data Collection System
For human-robot cotraining, we need to collect both robot

and human data [25]. For human data collection, we leverage
a portable commercial VR device, which allows data to be
collected anytime and anywhere. This provides great efficiency
in gathering diverse motions and a wider range of tasks [18].
For robot data collection, we use teleoperation to record
demonstrations. The top-left side of Figure 2 illustrates the two
types of data collection systems.

Human Data Collection with Portable VR Device. We
extend ARCap [10] to build our human data collection system
(Figure 3(a)), incorporating a portable VR headset for recording
hand keypoint positions 𝐾𝑡 , wrist poses 𝑊𝑡 and camera poses,
and an RGB camera for the image stream 𝐼𝑡 .

For hand pose recording, our goal is to capture the positions of
hand keypoints 𝐾𝑡 and human wrist poses 𝑊𝑡 in the coordinate
frame of the RGB camera (𝐼𝑡 ). However, these information
is recorded by VR device, placing it in the VR coordinate
space. Therefore, we use a self-designed calibration method
to transform all hand information from the VR coordinate
space to the RGB camera, detailed in Appendix VI-C. For data
collection, collectors are instructed to minimize head motion to
approximate the static camera setting of real robot hardware,
although slight movements are tolerated [54]. To ensure data
quality, we provide real-time feedback in the user’s VR view
to guide collectors during data acquisition (Figure 3(b)). The
feedback includes the RGB camera’s capture range and the
positioning of the hands:

• The range of images captured by the RGB camera is used
to guide users to ensure their hands are always visible to
the RGB camera [10].

• The hand positioning tells collector whether the hand poses
recorded by VR is strictly aligned with their hands in real
time, thus provide information about the recording delay
and accuracy.

We also provide gesture interface to allow collector to
abandon current recorded data anytime, if they think the data
quality is not good enough considering the principles and
feedback mentioned above.

Robot Data Collection with Teleoperation. Since our goal
is to achieve direct human-to-robot motion transfer, the robot
hardware platform need to match the functionality of the human
arm and hand. To this end, we choose the combination of a single
robot arm and a dexterous robot hand as our hardware platform
(Figure 3(c)). We develop our teleoperation system on Open-
Television [11], which captures human wrist and hand poses in
real time via a VR device and drives the robot to replicate these
motions. Based on the collection system above, we collect our
MotionTrans human-robot datasets (Section IV-A and Figure 4)
for multi-task cotraining.

C. Human Data Transformation to Robot Format
As shown in the previous section, the raw human data

collected from the VR device differs in format from robot data,
which prevents it from being directly used for cotraining with
robot policies [70, 44]. To address this, we propose directly
transforming human data into the robot’s observation-action
space [11, 43]. After transformation, the human data can serve
as a form of “supplementary robot data” for training any
mainstream end-to-end robot policy.

Transforming Observation-Action Space. The observation-
action space of the robot includes three components: image
observation 𝐼𝑡 , proprioceptive state 𝑃𝑡 , and action 𝐴𝑡 (refer to
Section III-A). Both 𝑃𝑡 and 𝐴𝑡 are generated by stacking wrist
poses𝑊𝑡 and hand joint states 𝐻𝑡 . Next, we describe the design
for these components:

• Image observation 𝐼𝑡 : We use egocentric view for both
human and robot data, as shown in Figure 4. The use
of the similar image view makes the spatial relationships
of objects in the scenes similar for accomplishing similar
tasks, thus enabling similar motions to achieve those tasks.

• Wrist poses 𝑊𝑡 : We use the egocentric camera coordinate
system (camera captures 𝐼𝑡 ) for both human and robot data.
This allows for the measurement of wrist poses in a unified
coordinate system, ensuring that the spatial definitions of
human and robot data are consistent.

• Hand joints state 𝐻𝑡 : we employ the dex-retargeting
library [53], an optimization-based inverse kinematics
solver, to map human hand keypoints 𝐾𝑡 to robot hand
joint state 𝐻𝑡 .

The design above converts human data into the same format
as robot data, enabling us to directly replay human data on real-
world robots. The replayable property of transformed human
data proves how aligned our processed data is with robot data.
By replaying human trajectories on a real-robot platform, we
derive the following key observations: (O1) the speed of human



manipulation is much faster than that of the robot, which affects
safety and motion planning stability; (O2) there is a discrepancy
between the distributions of human hand positions and the
robot’s comfortable workspace (all defined in egocentric camera
coordinate space). To alleviate these problem, we:

• (O1) We slow down human data by a factor of 2.25 via
poses and hand joints state interpolation. More advanced
techniques, such as the adaptive speed downsampling
strategy [58], are left for future exploration.

• (O2.1) We utilize action-chunk-based relative poses [12,
76] as wrist action representation to reduce distribution
mismatches between human and robot data. For instance,
even if the robot’s and human’s hand positions differ in
world space, their relative poses remain the same if they
move forward at the same speed.

• (O2.2) We encourage collectors to change viewpoints
between trajectory recordings. This enhances the diver-
sity of positional relationships between the camera view
and the targeted manipulation objects, thereby encouraging
policies to adapt to a larger distribution of hand poses and,
consequently, a larger workspace for the robot.

The methods and principles described above help reduce
the gap between human and robot data, thereby improving
the effectiveness of human-to-robot motion transfer. Prior
works [29, 30, 31] have proposed rendering robots into human
videos to further narrow the visual gap between the two domains.
We replicate this rendering approach, as shown in Figure 9, but
did not observe significant improvements over directly training
on human videos (Section IV-D). Therefore, we do not employ
this rendering technique by default in our framework.

D. Weighted Multi-Task Human-Robot Cotraining
By unifying the observation and action spaces, we enable

joint training of human and robot data under a shared end-to-
end robot policy. This section introduce the multi-task policy
architectures we use and how we train these policies.

End-to-End Multi-Task Policy Architectures. We explore
two popular end-to-end policy architectures: (1) Diffusion
Policy (DP) [12]: unlike the original single-task setup, we
extend DP for multi-task training. Each task is associated with
a learnable embedding, serving as a unique task condition.
The visual encoder is replaced with DINOv2 [48] to enhance
visual perception ability [32]. (2) Vision-Language-Action
model (𝜋0-VLA): we adopt network structure from [7], a policy
architecture integrating large-scale pretrained Vision-Language
Models [59] for multimodal perception and instruction follow-
ing. Since 𝜋0-VLA supports language input, we directly use
instructions to assign tasks. For 𝜋0-VLA, we load 𝜋0-droid
pretrained checkpoints [52] before training.

Unified Action Normalization. To improve training stability,
we apply Z-score normalization to both proprioceptive states and
actions before training [12, 13]. Previous human-robot cotrain-
ing works [25, 61] typically adopt independent normalization
for human and robot data, arguing that it reduces the action
gap between the two sources. However, in our motion-level

evaluation setting, where the goal is to directly deploy human
tasks on a real robot, this approach introduces a mismatch
between training (human normalization) and inference (robot
normalization), ultimately causing a performance drop (Sec-
tion IV-D). Therefore, we adopt unified action normalization
across human and robot data within our framework.

Weighted Human-Robot Cotraining. Our final step is to
design a strategy to train multi-task policies with the processed
human-robot dataset. Given the potential imbalance between
human and robot data [61, 54], we adopt a weighted cotraining
strategy similar to [65]. The training objective over the combined
dataset 𝐷 = 𝐷robot ∪ 𝐷human is defined as: L𝐷 = 𝛼L𝐷robot +
(1−𝛼)L𝐷human , where L denotes the loss function of imitation
learning [12, 7]. In this paper, we set:

𝛼 =
|𝐷human |

|𝐷human | + |𝐷robot |
where |𝐷robot | and |𝐷human | representing the dataset sizes. This
weight ensures that the sum of the weights for human and
robot data is equal, leading to the balance of these two data
sources. We also try domain adaptation training techniques like
domain confusion [63, 62] to promote knowledge transfer from
human domain to robot domain in our earlier exploration, but
do not find it beneficial for motion transfer and it always leads
to training instability. Thus, we choose the simplest weighted
cotraining strategy in our framework. More details could be
found in Appendix VI-E.

IV. Experiments
In this section, we conduct experiments to verify the effec-

tiveness of MotionTrans for human-to-robot motion transfer. We
first introduce our detailed experiment setup in Section IV-A,
including human-robot hardware platform, training datasets and
evaluation tasks and metric. We then conduct experiments for
both zero-shot (Section IV-B) and few-shot (Section IV-C)
settings, as demonstrated in Section III-A. Additionally, an
ablation study on the key designs of MotionTrans is performed
(Section IV-D). We also carry out experiments to explain the
mechanism of human-to-robot motion transfer in Section IV-E.
The evaluation results of all robot tasks are shown in Ap-
pendix VI-G. Finally, we verify the robustness of our results
concerning visual backgrounds in Appendix VI-H.

A. Experiment Setup
Hardware Platform. For the robot hardware (Figure 3(c)), we
use a Franka Emika robot arm [17] in combination with a 6DoF
Inspired Dexterous (Right) Hand [11]. This combination mimics
the functionality of a human right hand and arm. The robot is
mounted on a movable lift table to facilitate data collection in
various locations. A ZED2 camera is fixed to the table in an
egocentric view to provide an image observation stream. The
recorded images are first cropped to 640×480 resolution and
then resize to 224×224. The VR device used for teleoperation is
the Meta Quest 3 [11]. Calibration between the robot base and
the robot perception camera is achieved through the DROID
platform codebase [26].
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Fig. 4: Illustration of the MotionTrans Dataset, which comprises 3,213 demonstrations spanning 15 human tasks and 15 robot
tasks collected across more than 10 scenes. The content in the () for the “Mango-Bowl” task describes the method used to avoid
obstacles. For statistical analysis, tasks are grouped by motion-similar skill categories. For human task “Open Box+Panda-Box”,
it contains both open and pick-place skills. Detailed description and visualization of all 30 tasks are provided in Appendix VI-A.

Fig. 5: Illustration of all objects that have been manipulated for
tasks in the MotionTrans Dataset.

For human data collection (Figure 3(a)), we use the Meta
Quest 3 as our VR headset. To ensure consistency in image
observations, we also employ a ZED2 camera to record RGB
images and perform image cropping and resize, using the same
setup as in the robot hardware platform [25]. The camera
is attached to VR headset by a 3D-printed mounter [10].
The camera is connected to a laptop for data storage. The
communication between the VR headset and the laptop is
conducted via the local area network.

MotionTrans Multi-Task Dataset. Here we introduce the
MotionTrans Dataset, which is used to train our policies. The
dataset contains 3,213 demonstrations across more than 10

Egocentric Datasets Human Robot

Demos Tasks In the Wild Demos Tasks In the Wild

EgoMimic [25] 2150 3‡ 0% 1000 3 0%
PH2D [54] 26842 4‡ 100% 1552 4 0%
MotionTrans (Ours) 1705 15 100% 1508 15 50%

TABLE I: Comparisons of task-oriented egocentric human-
robot cotraining datasets. ‡ indicates that the human and robot
share the same task. For scene diversity (shown as the “In the
Wild” metric), we report the proportion of data collected in
daily-life environments (in-the-wild setting [32, 61]) rather than
controlled lab settings. Our MotionTrans Dataset demonstrates
significant improvements in both task/motion coverage and
scene diversity. These advances enable motion-level learning
research that is not achievable with existing datasets.

scenes, covering 15 human tasks and 15 robot tasks. A brief
summary of the dataset is shown in Figure 4. The manipulated
objects for all tasks are illustrated in Figure 5. The number of
demonstrations for each human/robot task ranges from 40 to 150.
The complete task list, the number of demonstrations and the
visualizations for all 30 tasks are provided in Appendix VI-A.
A comparison with previous human-robot cotraining datasets is
shown in Table I.

For tasks, the human and robot task sets are non-overlapping.
For motions, similar tasks across human and robot data (e.g.,
pick-and-place) share similar motion patterns but still exhibit
notable differences. In addition, some motions appear only



in the human dataset but not in the robot dataset, such as
unplugging, closing, lifting, etc. Overall, the dataset covers a
wide range of motions and skills, including pick-and-place,
pouring, wiping, pushing, pressing, opening, etc. This wide
coverage is proven crucial for successful motion transfer, as
demonstrated in subsequent ablation studies (Section IV-E). For
simplicity, we name pick-place task with “pick object-place
target” format, and name other task with “verb noun” format
in the main paper. For tasks with multiple steps, we name it as
“step1+step2” format.

To enhance the visual robustness of the policies [75]
(Section VI-H), such as robustness to different backgrounds
and lighting conditions, we collect these data across various
scenes [32]. Each human task is collected in at least 4 different
scenes. For robot tasks, about half of the data is collected in the
“green table scenes” (the scenes for the examples of the “Bread-
Pad” and “Unplug Charger” task in Figure 4), with random
disturbance objects placed on the table for approximately 80%
of the data. This scene is also designated as the default scene
for our evaluation. The other half of the robot tasks is collected
in at least 4 scenes. To enrich language instructions for VLA
training, we leverage GPT-4o [20] to paraphrase and expand
task descriptions in the dataset.

Evaluation Tasks and Metrics. Since our goal is to under-
standing the effectiveness of human-to-robot motion transfer,
we focus on evaluating the performance of robot policies
on the human tasks. Among all 15 tasks in human dataset,
there are two tasks (“Fold Towel” and “Pour Milk Bottle”)
not been able to deploy to robot due to the hardware design
limitation of robot hand (cannot be accomplished even if we
use teleoperation). Therefore, we focus on discussing other 13
tasks in this research. The list of all 13 evaluation tasks could
be found in Figure 6.

We use the Success Rate (SR) to evaluate the policy per-
formance in accomplishing specific tasks. However, this metric
alone is insufficient to reflect the effectiveness of motion transfer,
as it ignores meaningful motion during task execution. For
instance, a policy that demonstrates reaching for the target
object should be rated higher than one that does not move at
all. To address this limitation, we define a Motion Progress
Score (Score) to quantify the quality of policy motion for task
completion. Detailed scoring rubrics for all tasks are provided
in Appendix VI-B. For clarity, we normalize the Score to a [0,1]
range in the main paper. For each task, we conduct 10 rollouts
and calculate the average results for both metrics. We change
the object arrangement for each rollout to cover a wide range
of configurations of the task across the 10 rollouts.

B. Zero-shot Experiment

The goal of the zero-shot experiment is to verify the
effectiveness of direct human-to-robot motion transfer. We
train policies using our MotionTrans Dataset. Subsequently, we
directly deploy policies to real robot hardware and evaluate the
performance of tasks in human data. We refer to this as zero-
shot setting because the policies learn motions from humans

without any robot data collected for these human tasks. We seek
to answer the following questions:

• (Q1.1) Can the policy directly learn to accomplish tasks
in human data by human-robot cotraining, even without
collecting any robot data for these tasks?

• (Q1.2) For tasks that cannot be accomplished, can the
policy learn meaningful motion for task completion?

• (Q1.3) Is cotraining with robot data the key factor for
achieving explicit motion transfer?

• (Q1.4) What is the difference in motion transfer effective-
ness between different policy architectures?

Experiment Details. We train two end-to-end policies, Diffu-
sion Policy (DP) and 𝜋0-VLA (as mentioned in Section III-D).
For DP, we train it for 300 epochs with a learning rate of 5×10−4

and 1024 batch size. For 𝜋0-VLA, we train it for 160,000
steps with a learning rate of 2.5× 10−5 and 192 batch size.
Both models are trained with the AdamW optimizer [42]. The
training takes approximately 1.5 days and 2.5 days respectively.
In this paper, we focus on enabling human-to-robot transfer for
mainstream end-to-end policies. Therefore, we do not compare
against zero-shot intermediate representation-based methods
such as Vid2Robot [22], General-Flow [74], EgoZero [39],
ZeroMimic [57] etc., which are not compatible with such
policies. Instead, our analysis centers on differences among end-
to-end policy architectures (DP vs. 𝜋0-VLA).

(Q1.1) MotionTrans enables policies to achieve non-trivial
success rate across 9 tasks in the human dataset. The results
of the zero-shot experiment are shown in Figure 6. As shown
in the results, 9 tasks achieve a non-trivial success rate. The
average success rate on all 13 tasks is approximately 20%. The
visualization of two examples could be found in the Figure 7(a)
(“Orange-Bucket” and “Unplug Charger”). Among these tasks,
pick-and-place tasks account for the vast majority. This can be
attributed to (1) the simplicity of pick-and-place motion, (2) the
similarity of motions between different pick-and-place tasks,
and (3) the large number of such tasks in our dataset. Notably,
for the cases where even if both the pick objects and place
targets are not seen in robot tasks (e.g., the “Orange-Bucket”
task, visualized on the left side of Figure 7(a)), this type of
task-level transfer is still possible.

Other accomplished tasks include motions such as pouring,
unplugging, lifting, opening and closing (pressing). While
some tasks (e.g., “Unplug Charger”, 20%) attain only limited
success rate, the model consistently exhibit meaningful motion
tendencies in unsuccessful rollouts, as will be discussed below.
Overall, reaching the target emerged as the most reliable
step across tasks, whereas precision-demanding actions such
as grasping and infrequent motions in the dataset, such as
unplugging, achieved limited success rates.

(Q1.2) For unsuccessful tasks, MotionTrans enables policies
to learn meaningful motions toward task completion.
Figure 6 shows that both DP and 𝜋0-VLA achieve positive
Motion Progress Scores across all tasks, with an overall average
of about 0.5. This indicates that the policies are able to complete
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Fig. 6: Results of MotionTrans in the zero-shot experiment setting. The results show that both Diffusion Policy (DP)[? ] and
𝜋0-VLA[7] achieve successful human-to-robot motion transfer. Even without any robot data for these human tasks, 9 tasks attain
a non-zero success rate. For the remaining tasks, MotionTrans still generates meaningful motion for task accomplishment, as
indicated by a non-trivial Motion Progress Score.

certain sub-processes for all evaluation tasks. For instance, in
the “Wipe Towel” task, both DP and 𝜋0-VLA learn the motion of
“push towel forward” to some extent (left side of Figure 7(b)).
Moreover, we observe that human data enables the policy to
identify spatial locations for almost all evaluated human tasks,
which is represented as reaching the target manipulated objects
(may only appear in human data) to some extent. An example
of this is the “Press Stapler” task in Figure 7(b): although the
stapler is not seen in the robot data, the policy still performs
approaching behavior.

(Q1.3) Cotraining with robot data is the key factor for
successful motion transfer. We find that when robot data is
not included for cotraining, the success rate across all tasks is
0% for zero-shot setting. Generally, the policy trained solely on
human data exhibits random motion when deployed on the robot.
This demonstrates that cotraining with robot data is essential
for explicit human-to-robot motion transfer, which could bridge
the gap between humans and robots, allowing human motions
to adapt to robot embodiment. A detailed analysis of the
mechanism by which robot data support motion transfer can
be found in Section IV-E.

MotionTrans-DP MotionTrans-𝜋0-VLA

Toy Bear-Box 40 0
Bread-Bucket 100 20
Banana-Plate 50 10
Orange-Bucket 70 50

Average 65 20

TABLE II: The Success Rate of DP and 𝜋0-VLA on all
evaluation pick-and-place tasks for zero-shot setting. Generally,
DP outperforms 𝜋0-VLA during the grasping stage.

(Q1.4) DP and 𝜋0-VLA each have their own advantages
(manipulation precision and task adherence). As shown in
Figure 6, no single model excels across all tasks. On average,
the performance of the two models is nearly identical. However,
we observe that different models demonstrate their strengths
on different tasks. Generally, DP performs better than 𝜋0-
VLA in precise manipulation stage, such as grasping, and
exhibits stronger spatial location capabilities. An example of
evidence for this is that, for all pick-and-place tasks, the average
grasping success rate of 𝜋0-VLA is 20%, while DP achieves
65% (Table II). In contrast, 𝜋0-VLA shows stronger instruction
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(c) Comparison between DP and ��−��� on Pouring Motion

Fig. 7: The visualizations for zero-shot human-to-robot motion transfer from our MotionTrans framework. All tasks shown here
do not involve any robot data collection and are learned from human data. These results demonstrate that the MotionTrans enables
explicit human-to-robot motion transfer for task completion through human-robot cotraining.

following for motion generation in more cases. For example, in
the “Pour Bottle” task, we observed limited wrist rotation with
DP, while 𝜋0-VLA successfully performs the complete pouring
action (Figure 7(c)). We hypothesize that this difference arises
from a balance between visual perception and task semantic
following. The model that focuses more on visual perception
(DP) tends to achieve greater manipulation precision, whereas
the model that emphasizes task semantics and instruction
following (𝜋0-VLA) can adhere to task requirements more
stringently.

C. Few-shot Experiment
In this section, we investigate whether motion transfer

from human-robot cotraining can also enhance performance
in a few-shot finetuning setting, where a limited number of
robot demonstrations of human tasks are available for policy
finetuning. We aim to answer the following questions:

• (Q2.1) Will pretraining on MotionTrans Dataset help
improve policy finetuning performance?

• (Q2.2) What is the contribution of human data versus robot
data for policy pretraining?

• (Q2.3) How does pretraining improvement vary with
increasing finetuning data?

Experiment Details. Considering DP and 𝜋0-VLA exhibit
similar average performance in zero-shot experiments, we focus
on DP architecture for computational resource efficiency in
this part. We additionally collect 20 demonstrations for all

human tasks in the default “green table” evaluation scene, as
mentioned in the dataset part in Section IV-A. Subsequently, we
perform 5-shot and 20-shot multi-task finetuning [6] based on
checkpoints previously trained on the MotionTrans Dataset. We
finetune DP with a learning rate of 1×10−4 and a batch size of
256 for 200 epochs, employing the AdamW optimizer [42]. The
finetuning process requires 1 hour for the 5-shot setting and 4
hours for the 20-shot setting.

We compared our method with three baselines to investigate
the impact of different data components: (1) “from-scratch”,
which means training policies without any pretraining; (2)
“robot-only”, which entails pretraining solely on robot data
from the MotionTrans Dataset before finetuning; and (3)
“human-only”, which is pretrained exclusively on human data.

(Q2.1) Pretraining on MotionTrans Dataset enable signif-
icant improvement for finetuning performance. The suc-
cess rate results of the few-shot experiments are presented
in Figure 8. The results of Motion Progress Score can be
found in Appendix VI-F. We can see that policy pretrained
on MotionTrans Dataset gains around 40% average success
rate improvement compared to “from-scratch” baseline. This
is established for both 5-shot and 20-shot setting. These results
prove that pretraining on human-robot data could provide useful
motion prior [72, 70] for downstream finetuning.

(Q2.2) Both robot and human data during pretraining
are crucial for enhancing performance. From Figure 8,
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Fig. 8: Results of the success rate for few-shot finetuning experiments. For readability, only the results of 8 example tasks are
presented here. The Motion Progress Score results can be found in Appendix VI-F. From these results, we can conclude that both
human and robot data during pretraining are important for improving finetuning performance.

we can see that policy pretrained on both human and robot
data (MotionTrans) shows a significant advantage compared
to human-only or robot-only pretraining. Besides, robot-only
pretraining outperforms human-only pretraining on average.
In our setting, robot pretraining uses data from the same
embodiment but different tasks, whereas human pretraining
uses data from the opposite case. We therefore conclude that
maintaining the same embodiment in pretraining data is more
important than exactly matching tasks. This is because the
distribution of robot data is generally closer to the downstream
robot finetuning distribution than human data, even when the
tasks differ. Moreover, motions across different tasks often share
similarities, so different robot tasks can still benefit downstream
finetuning performance [7].

(Q2.3) Human-robot pretraining is more effective in low
finetuning data region. Finally, we analyze the impact of
pretraining with varying amounts of finetuning data. As shown
in Figure 8, the average performance of the policies improves
consistently with an increase in finetuning data for all methods.
However, the improvements are much larger in the 5-shot
setting compared to the 20-shot setting. Moreover, when 20
finetuned demonstrations are available, the advantage of robot-
only pretraining becomes minimal, and the benefit of human-
only pretraining disappears. However, in the 5-shot setting, all
pretraining methods show a significant advantage over the from-
scratch baseline.

D. Design Ablation
We conduct an ablation study on the key designs of

MotionTrans. We compare three variants of MotionTrans in zero-
shot setting experiments, including common techniques used in
prior human-to-robot imitation learning:

• w/ Abs Pose: We replace the action-chunk-based relative
pose [13] with the original absolute egocentric pose for

Score SR (%)

w/ Abs Pose 0.370 10.0
w/ ED-Norm [25, 61] 0.341 8.4
w/ Visual Rendering [29, 31] 0.475 23.1

MotionTrans-DP 0.492 23.1

TABLE III: Ablation results of design choices for MotionTrans.
The results are averages across all 13 evaluation human tasks.

Rendered Data: Bread-Bucket

Rendered Data: Banana-Plate

Fig. 9: The visualizations of the rendered RGB observations
for the w/ Visual Rendering variant in design ablation (Sec-
tion IV-D).

wrist action representation.
• w/ ED-Norm [25, 61]: We use independent action and pro-

prioception normalization for human and robot data before
policy training (Embodiment Dependent Normalization).

• w/ Visual Rendering [30, 29, 31]: We first replay robot
data in simulation, then crop the rendered robot and paste
it to the original RGB image observation. Visualizations of
the rendered results are shown in Figure 9.

The policy architecture chosen for all variants is Diffusion



Score SR (%)

H-bucket 0.0 0
H-bucket + R-pad 0.275 0
H-bucket + R-platform 0.5 30
H-bucket + R-pad + R-platform 0.625 40

H-bucket + R-pad + R-platform + PP-set 0.75 70
all data (MotionTrans) 0.825 80

TABLE IV: The results of the case study for the “Bread-Bucket”
task in zero-shot setting, including outcomes from training on
different subsets of MotionTrans Datasets. Detailed analysis
could be found in Section IV-E.

R-Pad
0.3cm

Bread
4.0cm

H-Bucket
15.3cm

R-Platform
20.7cm

Fig. 10: The visualizations of key objects used in the “Bread-
Bucket” case study are presented here. The height of each object
is labeled beneath it.

Policy (DP) [12]. The results are averaged across all 13
evaluation tasks and shown in Table III. We observe that w/ Abs
Pose and w/ ED-Norm dramatically decrease the performance
of human-to-robot motion transfer. For w/ Abs Pose, the usage
of absolute pose increases the distribution difference between
human and robot action label, prohibiting motion transfer, as
discussed in Section III-C. For w/ ED-Norm, performance
drops because the embodiment-dependent normalization creates
a discrepancy in normalization between policy training and
deployment. This contrasts with the phenomenon observed
in visual robustness evaluations as demonstrated by previous
works [25, 61]. When directly learning new motions and skills
from human data, it is preferable to keep action normalization
consistent between training and inference.

For w/ Visual Rendering, we find that performance is nearly
the same as the non-rendered version. This may be explained by
the fact that, despite appearing realistic to humans, the rendered
results still include cues enabling neural networks to identify the
embodiment domain. From this perspective, they offer little dis-
tinction from the original human videos. One potential solution
is to also conduct inpainting during policy inference [30], but
may lead to additional computational overhead and policy delay.
All these results demonstrate that, when considering motion-
level transfer and evaluation, the effectiveness of certain designs
may differ from their effectiveness when using human data to
improve visual robustness [61] or the training efficiency [25] for
in-domain robot tasks.

E. Analysis of Motion Transfer Mechanisms

We have verified the feasibility of explicit human-to-robot
motion transfer in our zero-shot experiments (Section IV-B).
However, the underlying mechanisms of this transfer remain
underexplored. In this section, we design experiments to
investigate these mechanisms from three perspectives: (1) how
actions transfer, (2) how visual perception transfers, and (3)
the scaling trends of motion transfer. We then describe the
experimental setup and present the corresponding conclusions.

(Q3.1) How Do Actions Transfer? To answer the question, we
conduct a case study by down-sampling the number of tasks. We
train policies on different subsets of MotionTrans Dataset and
compare their performance, gaining insights into how varying
training tasks and motions influence the actions generated during
real-robot inference. We select the task “Bread-Bucket” as the
evaluation task for our case study, as it already demonstrates a
high success rate (80%) in zero-shot settings, indicating effective
motion transfer. Since “action” is an abstract concept, we focus
on a concrete dimension: the height of object placement.
Three tasks with varying placement heights for the “bread”
object are selected to create training subsets:

• (Human Data) Bread-Bucket: evaluation task, denoted
as “H-bucket”.

• (Robot Data) Bread-Pad: placing bread on a thin red pad,
“R-pad”.

• (Robot Data) Bread-Platform: placing bread on a tall
black platform, “R-platform”.

Visualizations and placement heights of objects in these tasks
are shown in Figure 10, and evaluation results in Table IV (rows
1–4). Trajectory visualizations are provided in Figure 11. Results
show that training only on human data tends to cause ambiguity
during deployment on robots, consistent with our zero-shot
findings (Section IV-B). Cotraining with a single robot task
appears to bias the policy toward that specific placement height.
When both R-pad and R-platform are included, the policy shows
evidence of interpolating across placement heights, leading to
bucket-height-aware motions.

Based on the results, we hypothesize that: the actions for
human task completion during real-robot inference are
generated by interpolating actions from robot data (e.g.,
from R-Pad at 0.3cm and R-Platform at 20.7cm to H-Bucket
at 15.3cm). This interpolation ability is learned by training on
task-aware motions in human data. When the policy encounters
the robot embodiment during inference, it still generates actions
within the safe manipulation range as defined by the robot data.
However, task-specific elements, such as task identifiers or
task-related objects in image observation, trigger the policy to
activate the interpolation process to generate task-aware motion.

(Q3.2) How Do Visual Perception Transfers? We next
examine visual perception. To understand the impact on policy
visual perception when the embodiment changes from human
during training to robot during inference, we visualize attention
maps of trajectories from zero-shot MotionTrans-DP policy
using the DINOv2 encoder [48] and Grad-CAM [56].
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Fig. 11: The visualizations of the MotionTrans-DP results for the “Bread-Bucket” task, trained con various combinations of human
and robot tasks. By analyzing these results (Section IV-E), we suggest that motion transfer occurs through the use of motion in
human data to support robot motion interpolation for generating motions for these human tasks.
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Fig. 12: The visualization of the attention map from the DINO
encoder [48] for MotionTrans-DP, based on the Grad-Cam
toolkit [56]. This shows that the vision encoder learns to focus
on the target manipulation objects for tasks in human datasets,
even when the embodiment changes to a robot during inference.

Example results are shown in Figure 12. The findings indicate
that the visual encoder attends to target objects in tasks of
human data, despite embodiment shifts at deployment (from
human to robot). This embodiment-invariant, task-aware rep-
resentation allows the policy to generate task-relevant motions
during robot deployment and explains its ability to locate target
objects even if they appeared only in human data.

(Q3.3) Is There a Scaling Trend in Motion Transfer?
Finally, we study the effect of task diversity and motion coverage.
we hypothesize that a wider range of motion and task coverage
may enhance the policy’s ability for motion interpolation and
visual attention as mentioned before, thus leading to improved
transfer performance. We verify this through subset training
comparison experiment, similar to Q3.1. We introduce a new
task subset “PP-set” compared to Q3.1, which includes data
from two robot tasks “Mango-Bowl” and “Capybara-PPad” and
two human tasks “Banana-Plate” and “Toy Bear-Box”.

The performance of MotionTrans-DP trained on different

subsets for the “Bread-Bucket” task is shown in the last 3 rows
of Table IV. The results indicate a steady improvement with
increased task coverage, suggesting that motion transfer may
benefit from broader task-related motion coverage. While
our study is based on a limited subset, these findings provide
preliminary evidence of a potential scaling trend in human-to-
robot motion transfer.

F. Supplementary Experiment Results

The evaluation results of all tasks in robot data are shown
in Appendix VI-G. We also verify the robustness of our results
concerning visual backgrounds in Appendix VI-H.

V. Conclusion

In this paper, we propose MotionTrans, a framework that
achieves motion-level learning from human data for end-to-end
robot policies. The experiments show that our method achieves
explicit human-to-robot motion transfer in a zero-shot setting
and significantly improves finetuning performance in a few-
shot setting. We identify two key factors for successful motion
transfer: (1) cotraining with robot data, and (2) broader coverage
of motions and tasks, which leads to better transfer performance.
We hope that the new motion-centric insights that we propose
could enhance the utilization of human data in robot policy
learning in more effective ways.

Limitations and Future Directions. Our largest limitation is
that the height perception ability of the policies is still limited,
which causes them to sometimes fail to reach the correct height
when considering in-the-wild scenes. This limitation arises from
our monocular egocentric perception setting, which may be
addressed by adding wrist camera for both human and robot
hardware platforms [69, 61]. Another limitation is that our
study is still limited to self-collected human dataset. Extending
motion-level learning to larger, internet-scale datasets, as in [44],
is left for future work.
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Wasserstein generative adversarial networks. In Interna-
tional conference on machine learning, pages 214–223.
PMLR, 2017.

[3] Shikhar Bahl, Russell Mendonca, Lili Chen, Unnat Jain,
and Deepak Pathak. Affordances from human videos as a
versatile representation for robotics. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13778–13790, 2023.

[4] Jose Barreiros, Andrew Beaulieu, Aditya Bhat, Rick
Cory, Eric Cousineau, Hongkai Dai, Ching-Hsin Fang,
Kunimatsu Hashimoto, Muhammad Zubair Irshad, Masha
Itkina, et al. A careful examination of large behavior
models for multitask dexterous manipulation. arXiv
preprint arXiv:2507.05331, 2025.

[5] Homanga Bharadhwaj, Debidatta Dwibedi, Abhinav
Gupta, Shubham Tulsiani, Carl Doersch, Ted Xiao,
Dhruv Shah, Fei Xia, Dorsa Sadigh, and Sean Kirmani.
Gen2act: Human video generation in novel scenarios
enables generalizable robot manipulation. arXiv preprint
arXiv:2409.16283, 2024.

[6] Hongzhe Bi, Lingxuan Wu, Tianwei Lin, Hengkai Tan,
Zhizhong Su, Hang Su, and Jun Zhu. H-rdt: Human
manipulation enhanced bimanual robotic manipulation.
arXiv preprint arXiv:2507.23523, 2025.

[7] Kevin Black, Noah Brown, Danny Driess, Adnan Esmail,
Michael Equi, Chelsea Finn, Niccolo Fusai, Lachy Groom,
Karol Hausman, Brian Ichter, et al. pi 0: A vision-
language-action flow model for general robot control.
arXiv preprint arXiv:2410.24164, 2024.

[8] Gary Bradski, Adrian Kaehler, et al. Opencv. Dr. Dobb’s
journal of software tools, 3(2), 2000.

[9] Qingwen Bu, Yanting Yang, Jisong Cai, Shenyuan Gao,
Guanghui Ren, Maoqing Yao, Ping Luo, and Hongyang

Li. Univla: Learning to act anywhere with task-centric
latent actions. arXiv preprint arXiv:2505.06111, 2025.

[10] Sirui Chen, Chen Wang, Kaden Nguyen, Li Fei-Fei, and
C Karen Liu. Arcap: Collecting high-quality human
demonstrations for robot learning with augmented reality
feedback. arXiv preprint arXiv:2410.08464, 2024.

[11] Xuxin Cheng, Jialong Li, Shiqi Yang, Ge Yang, and
Xiaolong Wang. Open-television: Teleoperation with
immersive active visual feedback. arXiv preprint
arXiv:2407.01512, 2024.

[12] Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau,
Yilun Du, Benjamin Burchfiel, Russ Tedrake, and Shuran
Song. Diffusion policy: Visuomotor policy learning via
action diffusion. The International Journal of Robotics
Research, page 02783649241273668, 2023.

[13] Cheng Chi, Zhenjia Xu, Chuer Pan, Eric Cousineau,
Benjamin Burchfiel, Siyuan Feng, Russ Tedrake, and
Shuran Song. Universal manipulation interface: In-the-
wild robot teaching without in-the-wild robots. arXiv
preprint arXiv:2402.10329, 2024.

[14] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
Antonino Furnari, Evangelos Kazakos, Jian Ma, Davide
Moltisanti, Jonathan Munro, Toby Perrett, Will Price,
et al. Rescaling egocentric vision: Collection, pipeline and
challenges for epic-kitchens-100. International Journal of
Computer Vision, 130(1):33–55, 2022.

[15] Jakob Engel, Kiran Somasundaram, Michael Goesele,
Albert Sun, Alexander Gamino, Andrew Turner, Arjang
Talattof, Arnie Yuan, Bilal Souti, Brighid Meredith, et al.
Project aria: A new tool for egocentric multi-modal ai
research. arXiv preprint arXiv:2308.13561, 2023.

[16] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel,
and Sergey Levine. One-shot visual imitation learning via
meta-learning. In Conference on robot learning, pages
357–368. PMLR, 2017.

[17] Sami Haddadin, Sven Parusel, Lars Johannsmeier,
Saskia Golz, Simon Gabl, Florian Walch, Mohamadreza
Sabaghian, Christoph Jähne, Lukas Hausperger, and Si-
mon Haddadin. The franka emika robot: A reference
platform for robotics research and education. IEEE
Robotics & Automation Magazine, 29(2):46–64, 2022.

[18] Ryan Hoque, Peide Huang, David J Yoon, Mouli Siva-
purapu, and Jian Zhang. Egodex: Learning dexterous
manipulation from large-scale egocentric video. arXiv
preprint arXiv:2505.11709, 2025.

[19] Cheng-Chun Hsu, Bowen Wen, Jie Xu, Yashraj Narang,
Xiaolong Wang, Yuke Zhu, Joydeep Biswas, and Stan
Birchfield. Spot: Se (3) pose trajectory diffusion for object-
centric manipulation. arXiv preprint arXiv:2411.00965,
2024.

[20] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila
Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system
card. arXiv preprint arXiv:2410.21276, 2024.

[21] Physical Intelligence, Kevin Black, Noah Brown, James
Darpinian, Karan Dhabalia, Danny Driess, Adnan Esmail,



Michael Equi, Chelsea Finn, Niccolo Fusai, et al. pi 0.5:
a vision-language-action model with open-world general-
ization. arXiv preprint arXiv:2504.16054, 2025.

[22] Vidhi Jain, Maria Attarian, Nikhil J Joshi, Ayzaan Wahid,
Danny Driess, Quan Vuong, Pannag R Sanketi, Pierre
Sermanet, Stefan Welker, Christine Chan, et al. Vid2robot:
End-to-end video-conditioned policy learning with cross-
attention transformers. arXiv preprint arXiv:2403.12943,
2024.

[23] Yuheng Ji, Huajie Tan, Jiayu Shi, Xiaoshuai Hao, Yuan
Zhang, Hengyuan Zhang, Pengwei Wang, Mengdi Zhao,
Yao Mu, Pengju An, et al. Robobrain: A unified brain
model for robotic manipulation from abstract to concrete.
In Proceedings of the Computer Vision and Pattern
Recognition Conference, pages 1724–1734, 2025.

[24] Siddharth Karamcheti, Suraj Nair, Annie S Chen, Thomas
Kollar, Chelsea Finn, Dorsa Sadigh, and Percy Liang.
Language-driven representation learning for robotics.
arXiv preprint arXiv:2302.12766, 2023.

[25] Simar Kareer, Dhruv Patel, Ryan Punamiya, Pranay
Mathur, Shuo Cheng, Chen Wang, Judy Hoffman, and
Danfei Xu. Egomimic: Scaling imitation learning via
egocentric video. arXiv preprint arXiv:2410.24221, 2024.

[26] Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ash-
win Balakrishna, Sudeep Dasari, Siddharth Karam-
cheti, Soroush Nasiriany, Mohan Kumar Srirama,
Lawrence Yunliang Chen, Kirsty Ellis, et al. Droid: A
large-scale in-the-wild robot manipulation dataset. arXiv
preprint arXiv:2403.12945, 2024.

[27] Hanjung Kim, Jaehyun Kang, Hyolim Kang, Meedeum
Cho, Seon Joo Kim, and Youngwoon Lee. Uniskill:
Imitating human videos via cross-embodiment skill repre-
sentations. arXiv preprint arXiv:2505.08787, 2025.

[28] Yuxuan Kuang, Junjie Ye, Haoran Geng, Jiageng Mao,
Congyue Deng, Leonidas Guibas, He Wang, and Yue
Wang. Ram: Retrieval-based affordance transfer for gen-
eralizable zero-shot robotic manipulation. arXiv preprint
arXiv:2407.04689, 2024.

[29] Marion Lepert, Jiaying Fang, and Jeannette Bohg. Mas-
querade: Learning from in-the-wild human videos using
data-editing. arXiv preprint arXiv:2508.09976, 2025.

[30] Marion Lepert, Jiaying Fang, and Jeannette Bohg. Phan-
tom: Training robots without robots using only human
videos. arXiv preprint arXiv:2503.00779, 2025.

[31] Guangrun Li, Yaoxu Lyu, Zhuoyang Liu, Chengkai Hou,
Jieyu Zhang, and Shanghang Zhang. H2r: A human-to-
robot data augmentation for robot pre-training from videos.
arXiv preprint arXiv:2505.11920, 2025.

[32] Fanqi Lin, Yingdong Hu, Pingyue Sheng, Chuan Wen,
Jiacheng You, and Yang Gao. Data scaling laws in
imitation learning for robotic manipulation. arXiv preprint
arXiv:2410.18647, 2024.

[33] Fanqi Lin, Ruiqian Nai, Yingdong Hu, Jiacheng You,
Junming Zhao, and Yang Gao. Onetwovla: A unified
vision-language-action model with adaptive reasoning.
arXiv preprint arXiv:2505.11917, 2025.

[34] Jiaming Liu, Mengzhen Liu, Zhenyu Wang, Lily Lee,
Kaichen Zhou, Pengju An, Senqiao Yang, Renrui Zhang,
Yandong Guo, and Shanghang Zhang. Robomamba:
Multimodal state space model for efficient robot reasoning
and manipulation. arXiv e-prints, pages arXiv–2406,
2024.

[35] Jiaming Liu, Hao Chen, Pengju An, Zhuoyang Liu, Renrui
Zhang, Chenyang Gu, Xiaoqi Li, Ziyu Guo, Sixiang Chen,
Mengzhen Liu, et al. Hybridvla: Collaborative diffusion
and autoregression in a unified vision-language-action
model. arXiv preprint arXiv:2503.10631, 2025.

[36] Mengzhen Liu, Mengyu Wang, Henghui Ding, Yilong Xu,
Yao Zhao, and Yunchao Wei. Segment anything with
precise interaction. In Proceedings of the 32nd ACM
International Conference on Multimedia, pages 3790–
3799, 2024.

[37] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Qing Jiang, Chunyuan Li, Jianwei Yang,
Hang Su, et al. Grounding dino: Marrying dino with
grounded pre-training for open-set object detection. In
European conference on computer vision, pages 38–55.
Springer, 2024.

[38] Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan,
Huayu Chen, Zhengyi Wang, Ke Xu, Hang Su, and Jun
Zhu. Rdt-1b: a diffusion foundation model for bimanual
manipulation. arXiv preprint arXiv:2410.07864, 2024.

[39] Vincent Liu, Ademi Adeniji, Haotian Zhan, Siddhant
Haldar, Raunaq Bhirangi, Pieter Abbeel, and Lerrel Pinto.
Egozero: Robot learning from smart glasses. arXiv
preprint arXiv:2505.20290, 2025.

[40] Yangcen Liu, Woo Chul Shin, Yunhai Han, Zhenyang
Chen, Harish Ravichandar, and Danfei Xu. Immimic:
Cross-domain imitation from human videos via mapping
and interpolation. In 3rd RSS Workshop on Dexterous
Manipulation: Learning and Control with Diverse Data.

[41] Yunze Liu, Yun Liu, Che Jiang, Kangbo Lyu, Weikang
Wan, Hao Shen, Boqiang Liang, Zhoujie Fu, He Wang,
and Li Yi. Hoi4d: A 4d egocentric dataset for category-
level human-object interaction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 21013–21022, 2022.

[42] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017.

[43] Chenhao Lu, Xuxin Cheng, Jialong Li, Shiqi Yang,
Mazeyu Ji, Chengjing Yuan, Ge Yang, Sha Yi, and
Xiaolong Wang. Mobile-television: Predictive motion
priors for humanoid whole-body control. arXiv preprint
arXiv:2412.07773, 2024.

[44] Hao Luo, Yicheng Feng, Wanpeng Zhang, Sipeng Zheng,
Ye Wang, Haoqi Yuan, Jiazheng Liu, Chaoyi Xu, Qin
Jin, and Zongqing Lu. Being-h0: Vision-language-action
pretraining from large-scale human videos. arXiv preprint
arXiv:2507.15597, 2025.

[45] Arjun Majumdar, Karmesh Yadav, Sergio Arnaud, Jason
Ma, Claire Chen, Sneha Silwal, Aryan Jain, Vincent-Pierre
Berges, Tingfan Wu, Jay Vakil, et al. Where are we



in the search for an artificial visual cortex for embodied
intelligence? Advances in Neural Information Processing
Systems, 36:655–677, 2023.

[46] Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea
Finn, and Abhinav Gupta. R3m: A universal visual
representation for robot manipulation. arXiv preprint
arXiv:2203.12601, 2022.

[47] Yaru Niu, Yunzhe Zhang, Mingyang Yu, Changyi Lin,
Chenhao Li, Yikai Wang, Yuxiang Yang, Wenhao Yu,
Tingnan Zhang, Zhenzhen Li, et al. Human2locoman:
Learning versatile quadrupedal manipulation with human
pretraining. arXiv preprint arXiv:2506.16475, 2025.

[48] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy
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VI. APPENDIX
A. Details of MotionTrans Dataset and All Tasks

Here we present the details of all tasks in MotionTrans
Dataset. The visualization and descriptions / VLA-prompt of
all 15 human tasks could be found in Figure 17 and Table V. All
15 robot tasks could be found in could be found in Figure 18
and Table VI.

B. Rubrics of Motion Progress Score
Table VII provides the detailed rubrics for our Motion

Progress Score metric. The scores are allocated to the different
motions / stages required to complete the task, with a maximum
score of 8 points.

C. Calibration between VR Headset and RGB Camera
In human data collection (Section III-B), our goal is to record

hand pose information captured by a VR device in the RGB
camera’s coordinate system. To transform hand poses from
the VR coordinate space to the RGB camera, we need to
solve the transformation between the two cameras. We achieve
this by applying a chain-style calibration. We place an ArUco
calibration chessboard [1] on the table and ask users to sit facing
it without moving their heads, as illustrated in Figure 14. We
then perform two calibrations:

• Camera-Chessboard Calibration (Figure 14(a)). Solve
𝑇𝑐𝑎𝑚, the pose of the RGB camera based on the chessboard
coordinate, using the vision-based calibration method [1]
(OpenCV library [8]).

• VR-Chessboard Calibration (Figure 14(b)). Solve 𝑇𝑣𝑟 ,
the pose of the VR camera based on the chessboard
coordinate by asking the user to place an anchor block on
the origin of the chessboard coordinate. We then directly
read the coordinate of the anchor block (i.e., the origin) in
the VR camera’s coordinate space using the VR app, thus
obtaining 𝑇𝑣𝑟 by inverting the reading result. To improve
placement accuracy, we use the depth sensing built into
the VR headset to fit the desktop height (the blue plane
in Figure 14(c)), allowing users to only adjust the anchor
block’s position forward, backward, left, and right.

By using the chessboard as the bridge, the transformation
used to convert hand poses from the VR to the RGB camera
coordinate can be expressed as 𝑇−1

𝑐𝑎𝑚𝑇𝑣𝑟 .

D. Policies Implementation Details.
For the robot observation-action space (Section III-A), we

set the proprioception history 𝑇𝑝 = 2 and the action horizon
𝑇𝐴 = 16. The representation of the rotation component of wrist
poses is chosen as the first two rows of the rotation matrix,
as demonstrated in [12]. For policy control, we use 10 fps
for both data collection and policy inference. For Diffusion
Policy (DP) backbone, the task-embedding dimension is set as
16. The proprioception state is encoded via a 4-layer MLP.
The DINOv2 vision encoder utilizes DINOv2-base pretrained
checkpoints [48], and during training, we unfreeze the weights
of the DINOv2-base encoder. We first concatenate the task

Original Scene

Novel Scene

Fig. 13: Illustration of the visual background robustness experi-
ment and results. All results are averaged across all 13 evaluation
human tasks. For the novel background, the performance drops
slightly but remains at a persuasive level. This prove the
robustness of our motion transfer results.

embedding with the features from the vision and proprioception
encoder, and then input the concatenated features into the U-
Net-based Diffusion head for action generation [12].

E. Domain Confusion Training Framework
We also tried the domain confusion framework [63, 62] in

our earlier exploration. The key idea is to: (1) train a classifier to
identify the embodiment from the features generated by the pol-
icy encoder. (2) The policy’s target is to generate embodiment-
invariant features that mislead the classifier. These embodiment-
invariant features thus facilitate better embodiment-agnostic
knowledge transfer. (3) Train these two models in an adversarial
manner, allowing them to improve themselves by competing
against each other.

Following the domain adaptation framework, we additionally
train a binary classifier𝐶 to classify whether a data point is from
the human or robot domain. The input of 𝐶 is the concatenation
of image features and proprioception features generated by
policy 𝑃, as demonstrated in Appendix VI-D. Since we only
want 𝐶 to classify based on embodiment/domain, rather than
depend on shortcuts like task-specific content in 𝐷human / 𝐷robot
(e.g., task-related objects in image observations), we trained
𝐶 on an augmented version of 𝐷human / 𝐷robot: we first used
GroundingDINO [37] / RoboSAM [75] to segment the robot out
and then pasted it onto a novel MIL-texture background [16, 75].
We represent the augmented version as𝐷𝑎𝑢𝑔human /𝐷𝑎𝑢𝑔robot. The final
training loss L of policy 𝑃 can be represented as:

L𝑑𝑐 = 𝐷𝐾𝐿 (𝐶 𝑓 𝑟𝑜𝑧𝑒𝑛 (𝑃𝑒𝑛𝑐𝑜𝑑𝑒𝑟 (𝑠)) | | 𝑈) (1)
L = L𝐷 +𝛼L𝑑𝑐 (2)

where L𝐷 is the imitation learning loss described in Sec-
tion III-D, 𝑃𝑒𝑛𝑐𝑜𝑑𝑒𝑟 is the image and proprioception encoder of
policy 𝑃, L𝑑𝑐 is the domain confusion loss ( [63]),𝑈 is a binary
uniform distribution, and 𝑠 is the data points randomly sampled
from 𝐷

𝑎𝑢𝑔

human / 𝐷𝑎𝑢𝑔robot. The L𝑑𝑐 encourages policy 𝑃 to generate
similar features when only considering embodiment differences,
thereby leading to embodiment-invariant features that enhance



(a) Camera-Chessboard Calibration (b) VR-Chessboard Calibration (c) Height Senseing of VR

OpenCV

Anchor Block

Fig. 14: The illustration of the calibration process used to transform data from the VR coordinate space to the RGB camera space.
Detailed demonstration can be found in Appendix VI-C.
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Fig. 15: Results of the Motion Progress Score for few-shot finetuning experiments.

human-to-robot knowledge transfer. We train policy 𝑃 (based
on L) and classifier 𝐶 (based on binary cross entropy loss,
BCELoss) in an adversarial manner, which means that we
iteratively train these two models. When training one model,
we freeze the weight of another model. More details can be
found in [63]. The architecture of 𝐶 is the same as that of 𝑃,
except for changing the final MLP to a classifier head.

However, although we have tried our best to tune different
settings, we still find that this kind of adversarial training tends
to lead to mode collapse and training instability [2]. This is
reflected in the sudden jumps in the value of a certain loss during
the training process, as well as the robot’s inability to perform
meaningful actions during downstream policy deployment. The
key insight we gained from this experience is that rather than
only relying on updating the algorithm or model, improving the
scale and quality of data may be a more straightforward way to
enhance transfer effectiveness. With enough task-related motion
coverage, the simplest weighted cotraining framework shows the
strongest transfer performance in our setting.

F. Few-shot Results of Motion Progress Score
The results of Motion Progress Score for few-shot experiment

(Section IV-C) are shown in Figure 15. The conclusion drawn
from the Motion Progress Score aligns with that from the
Success Rate (Section IV-C).

G. Robot Tasks Experiment
In this section, we assess whether cotraining with human

data can enhance task performance on robot data. To do this,
we compare the Diffusion Policy (DP) trained on the complete
MotionTrans Dataset (MotionTrans-DP) with a version trained
solely on the robot data (robot-only). It is important to note
that the human tasks does not overlap with robot tasks, which
distinguishes our approach from previous cotraining works
[25, 54, 47]. The results for all 15 robot tasks are displayed in
Figure 16. Our findings indicate that, in our setting, cotraining
with non-overlapping human tasks does not significantly impact
the policy’s performance on robot tasks, with average success
rates of 58.0% for the robot-only model and 58.7% for the
MotionTrans-DP. We believe this is due to the following reasons:
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Fig. 16: Results of the success rate for zero-shot experiments on robot tasks. We conclude that when considering motion learning,
cotraining with non-overlapping human tasks does not ensure the improvement of policy’s performance on robot tasks, with
average success rates of 58.0% for the robot-only model and 58.7% for the MotionTrans-DP.

(1) We have already collected sufficient robot demonstrations for
all 15 robot tasks in our datasets, which reduces the impact of
cotraining (similar to the results in Section IV-C). (2) Although
we have conducted data alignment (Section III-C), the motions
from non-overlapping tasks still differ too much from those in
the robot data, thereby providing insufficient auxiliary guidance
for motion learning.

However, performance differences are observed in specific
tasks. For example, in the “Pour Cola” task, cotraining with
human data improved the policy’s grasping position, resulting
in more stable pouring and better performance. Conversely,
for the “Press Mouse” task, cotraining negatively affected the
final “press” action, leading to instances where the policy only
made contact without pressing. Tasks like “Towel R/L Bowl”
exhibit low success rates due to insufficient height generalization
capabilities of our policies, a limitation we discuss in the
limitations section (Section V).

H. Visual Background Robustness
Finally, we verify the visual robustness of our experiment re-

sults against scene background [70]. We change the background
from our default “green table” scenes (mentioned in the dataset
part in Section IV-A) to a new scene, as shown in Figure 13,
and evaluate Diffusion Policy (DP) performance for both zero-
shot and 20-shot settings. The results are averaged across all 13
evaluation human tasks and shown on the right side of Figure 13.
We observe that although the performance drops slightly, it still
maintains a non-trivial Motion Progress Score and success rate.
This proves the robustness of our results on motion-level human
data learning. Note that this does not mean we achieve in-the-
wild manipulation ability [61], which is not the main focus of
this paper and will be discussed in the limitations section.



Human Tasks Description / VLA-prompt
Unplug Charger unplug the white charger.
Bread-Bucket drop bread to the green bucket.
Press Stapler press the stapler.
Orange-Bucket put orange to the green bucket.
Wipe Towel wipe blue towel on the table and push it to the

bulky bottle.
Close Laptop close silver laptop.
Mango-Bowl (Bypass) put mango to pink bowl while avoiding obstacle

by bypassing.
Mango-Bowl (Lift) put mango to the pink bowl while avoiding

obstacle by lifting.
Press Dice press red dice to make it rotation.
Banana-Plate put banana to the white plate.
Pour Bottle pour bottle to the pink bowl.
Toy Bear-Box put toy bear to the black box.
Open Box + Pand-Box first open the white cap style box then put toy

panda to the box.
Fold Towel fold the blue towel.
Pour Milk Bottle pour milk bottle to the yellow pan.

TABLE V: All 15 human tasks with detailed descriptions (𝜋0-
VLA-prompt).

Robot Tasks Description / VLA-prompt
Push Cube push orange cube to the bulky bottle.
Panda-Box put toy panda to the box.
Bread-Pad put bread to the red pad.
Open Box open the white cap style box.
Bottle-PBucket drop black bottle to purple bucket.
Pour Cola pour cola to the red cup.
Move Dice move red dice to the bulky bottle.
Flip Down Bottle flip down the black bottle.
Press Mouse press the pink mouse.
Bread-Platform put bread to the high black platform.
Capybara-PPad put Capybara to the purple pad.
Chilli-Plate put chilli to the white plate.
Towel R/L Bowl wipe blue towel on the table and push it left or

right to the pink bowl.
Mango-Bowl put mango to the pink bowl.
Cucumber-PBucket put cucumber to purple bucket.

TABLE VI: All 15 robot tasks with detailed descriptions (𝜋0-
VLA-prompt).

Human Tasks Rubrics of Motion Progress Score
Mango-Bowl (Bypass) (1) show reach-grasp; (1) successful grasp; (2)

show bypassing; (2) successful bypassing; (1)
show reach-put; (1) successful put;

Mango-Bowl (Lifting) (1) show reach-grasp; (1) successful grasp; (1)
show lifting; (2) successful lifting; (2) show
down-putting; (1) successful put;

Pour Bottle (1) show reach-grasp; (1) successful grasp; (2)
show rotation; (2) successful pouring; (2) good
pour position;

Toy Bear-Box (2) show reach-grasp; (2) successful grasp; (2)
show reach-put; (1) successful put; (1) good
put position;

Bread-Bucket (1) show reach-grasp; (1) successful grasp; (2)
show reach-put; (2) successful put; (2) good
put height;

Close Laptop (2) show reach-press; (2) press finish < 30
degrees; (2) press finish< 15 degrees; (2) press
finish = 0 degrees;

Press Stapler (2) show reach-press; (2) success contact; (2)
good contact position; (2) press down;

Unplug Charger (2) show reach-grasp; (1) successful grasp; (1)
show lifting; (2) successful unplug; (2) still
holding after unplugging;

Open Box + Panda-Box (2) open the white box; (1) continue to move;
(1) no stop after open the box; (1) reach the
panda; (1) successful grasp the panda; (2)
successful put;

Wipe Towel (2) show reach-press; (2) successful press; (2)
show pushing (including retry); (2) successful
pushing;

Banana-Plate (1) show reach-grasp; (2) successful grasp; (2)
show reach-put; (2) successful put; (1) good
put height;

Orange-Bucket (1) show reach-grasp; (2) successful grasp; (2)
show reach-put; (2) successful put; (1) good
put height;

Press Dice (1) show reach-press; (1) successful contact;
(2) show press; (2) press > 5 cm; (2) successful
press to make it rotate;

TABLE VII: The rubrics of Motion Progress Score for all 13
evaluation human tasks. The scores are allocated to the different
motions / stages required to complete the task, with a maximum
score of 8 points. The number in () is the score of that stage. The
“show reach-{action}” rubric means policy shows approaching
motion to achieve {action}.
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Fig. 17: The visualizations of all 15 human tasks in the egocentric view.
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Fig. 18: The visualizations of all 15 robot tasks in the egocentric view.
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